(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^3).
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(0, s(z0)) → c2
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(nil, z0) → c4
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(nil) → c6
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(nil) → c8
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(leaf, z0) → c10
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(z0, leaf) → c12
LESS_LEAVES(leaf, cons(z0, z1)) → c13
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
MINUS(z0, 0) → c
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(0, s(z0)) → c2
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(nil, z0) → c4
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(nil) → c6
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(nil) → c8
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(leaf, z0) → c10
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(z0, leaf) → c12
LESS_LEAVES(leaf, cons(z0, z1)) → c13
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
Defined Rule Symbols:
minus, quot, app, reverse, shuffle, concat, less_leaves
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 8 trailing nodes:
SHUFFLE(nil) → c8
REVERSE(nil) → c6
CONCAT(leaf, z0) → c10
LESS_LEAVES(leaf, cons(z0, z1)) → c13
MINUS(z0, 0) → c
APP(nil, z0) → c4
QUOT(0, s(z0)) → c2
LESS_LEAVES(z0, leaf) → c12
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
Defined Rule Symbols:
minus, quot, app, reverse, shuffle, concat, less_leaves
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
quot(0, s(z0)) → 0
quot(s(z0), s(z1)) → s(quot(minus(z0, z1), s(z1)))
shuffle(nil) → nil
shuffle(add(z0, z1)) → add(z0, shuffle(reverse(z1)))
less_leaves(z0, leaf) → false
less_leaves(leaf, cons(z0, z1)) → true
less_leaves(cons(z0, z1), cons(z2, z3)) → less_leaves(concat(z0, z1), concat(z2, z3))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
K tuples:none
Defined Rule Symbols:
minus, reverse, app, concat
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
We considered the (Usable) Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(APP(x1, x2)) = 0
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = x1
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = 0
POL(add(x1, x2)) = 0
POL(app(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = [1] + x1 + x2
POL(leaf) = 0
POL(minus(x1, x2)) = 0
POL(nil) = 0
POL(reverse(x1)) = 0
POL(s(x1)) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
K tuples:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
Defined Rule Symbols:
minus, reverse, app, concat
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(APP(x1, x2)) = 0
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = x1
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = 0
POL(add(x1, x2)) = 0
POL(app(x1, x2)) = 0
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(leaf) = 0
POL(minus(x1, x2)) = x1
POL(nil) = 0
POL(reverse(x1)) = 0
POL(s(x1)) = [1] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
K tuples:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
Defined Rule Symbols:
minus, reverse, app, concat
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
We considered the (Usable) Rules:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(APP(x1, x2)) = 0
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = x1
POL(add(x1, x2)) = [1] + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(leaf) = 0
POL(minus(x1, x2)) = 0
POL(nil) = 0
POL(reverse(x1)) = x1
POL(s(x1)) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
K tuples:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
Defined Rule Symbols:
minus, reverse, app, concat
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(APP(x1, x2)) = x2 + x22
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = [2] + x1
POL(QUOT(x1, x2)) = x1·x2 + x12
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = 0
POL(add(x1, x2)) = 0
POL(app(x1, x2)) = x1 + x2 + x22 + [2]x1·x2
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = [2] + [2]x1 + [2]x22 + x1·x2
POL(cons(x1, x2)) = 0
POL(leaf) = [2]
POL(minus(x1, x2)) = x1
POL(nil) = 0
POL(reverse(x1)) = 0
POL(s(x1)) = [1] + x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
K tuples:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
Defined Rule Symbols:
minus, reverse, app, concat
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
We considered the (Usable) Rules:
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(APP(x1, x2)) = x2
POL(CONCAT(x1, x2)) = [1] + x1
POL(LESS_LEAVES(x1, x2)) = x2 + x22 + [2]x12
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = 0
POL(SHUFFLE(x1)) = 0
POL(add(x1, x2)) = 0
POL(app(x1, x2)) = [1] + x1 + [2]x2 + [2]x22 + [2]x1·x2 + [2]x12
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = [1] + x1 + x2
POL(cons(x1, x2)) = [2] + x1 + x2
POL(leaf) = [1]
POL(minus(x1, x2)) = [2] + x2 + x22
POL(nil) = 0
POL(reverse(x1)) = 0
POL(s(x1)) = [1]
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
K tuples:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
Defined Rule Symbols:
minus, reverse, app, concat
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
We considered the (Usable) Rules:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(APP(x1, x2)) = 0
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = [1] + [2]x1
POL(SHUFFLE(x1)) = x12
POL(add(x1, x2)) = [1] + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = [2] + [2]x22 + x1·x2 + x12
POL(cons(x1, x2)) = 0
POL(leaf) = [2]
POL(minus(x1, x2)) = [2] + [2]x2 + [2]x22 + x12
POL(nil) = 0
POL(reverse(x1)) = x1
POL(s(x1)) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:
APP(add(z0, z1), z2) → c5(APP(z1, z2))
K tuples:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
Defined Rule Symbols:
minus, reverse, app, concat
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
APP(add(z0, z1), z2) → c5(APP(z1, z2))
We considered the (Usable) Rules:
reverse(nil) → nil
app(add(z0, z1), z2) → add(z0, app(z1, z2))
app(nil, z0) → z0
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
And the Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(APP(x1, x2)) = x1
POL(CONCAT(x1, x2)) = 0
POL(LESS_LEAVES(x1, x2)) = 0
POL(MINUS(x1, x2)) = 0
POL(QUOT(x1, x2)) = 0
POL(REVERSE(x1)) = [1] + x12
POL(SHUFFLE(x1)) = x12 + x13
POL(add(x1, x2)) = [1] + x1 + x2
POL(app(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c11(x1)) = x1
POL(c14(x1, x2, x3)) = x1 + x2 + x3
POL(c3(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(concat(x1, x2)) = 0
POL(cons(x1, x2)) = 0
POL(leaf) = 0
POL(minus(x1, x2)) = 0
POL(nil) = 0
POL(reverse(x1)) = x1
POL(s(x1)) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
reverse(nil) → nil
reverse(add(z0, z1)) → app(reverse(z1), add(z0, nil))
app(nil, z0) → z0
app(add(z0, z1), z2) → add(z0, app(z1, z2))
concat(leaf, z0) → z0
concat(cons(z0, z1), z2) → cons(z0, concat(z1, z2))
Tuples:
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
S tuples:none
K tuples:
LESS_LEAVES(cons(z0, z1), cons(z2, z3)) → c14(LESS_LEAVES(concat(z0, z1), concat(z2, z3)), CONCAT(z0, z1), CONCAT(z2, z3))
QUOT(s(z0), s(z1)) → c3(QUOT(minus(z0, z1), s(z1)), MINUS(z0, z1))
SHUFFLE(add(z0, z1)) → c9(SHUFFLE(reverse(z1)), REVERSE(z1))
MINUS(s(z0), s(z1)) → c1(MINUS(z0, z1))
CONCAT(cons(z0, z1), z2) → c11(CONCAT(z1, z2))
REVERSE(add(z0, z1)) → c7(APP(reverse(z1), add(z0, nil)), REVERSE(z1))
APP(add(z0, z1), z2) → c5(APP(z1, z2))
Defined Rule Symbols:
minus, reverse, app, concat
Defined Pair Symbols:
MINUS, QUOT, APP, REVERSE, SHUFFLE, CONCAT, LESS_LEAVES
Compound Symbols:
c1, c3, c5, c7, c9, c11, c14
(21) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(22) BOUNDS(1, 1)